eigensound| Inversive Geometry Sound Laboratory
Professional sound design through mathematical inversive transformations (Research Demo v0.1.0)
Simple Mode
Advanced Mode
Soundscape Mode
Click "Initialize Audio" to begin exploration
Initialize Audio
Play
Stop
Export Audio
Recording...
0:00
Stop Recording
Download
Sound Sources
Source Type
Oscillator
Noise Generator
Granular Synthesis
Formant Synthesis
Sample Playback
Microphone Input
Frequency:
440 Hz
Waveform Type
Sine Wave
Square Wave
Sawtooth
Triangle
Volume:
0.3
Load Audio File
Choose Audio File
Advanced Parameters
Harmonics:
0
Detune:
0
Grain Size:
50ms
Grain Density:
4
Grain Pitch Var:
0.2
Formant Freq:
800Hz
Grain Inversion:
0.0
Grain Radius:
1.0
C3
C4
E4
G4
C5
E5
G5
C6
Microphone Active
Start Microphone
Inversive Geometry
Algorithm
Amplitude Inversion
Spectral Inversion
Pole-Polar Transform
Möbius Transform
Orthogonal Circles
Cross-Ratio Preserving
Cardioid Transform
Lemniscate Transform
Stereographic Projection
Inversion Radius:
1.0
Inversion Center:
0.0
Effect Intensity:
0.5
Advanced Parameters
Angle Preservation:
1.0
Orientation Reversal:
0.0
Cross-Ratio Factor:
1.0
Complex Phase:
0°
Post-Processing
Spatial Processing
Mono
Stereo
Binaural
Ambisonics
Reverb:
0.0
Delay:
0.0
Filter Cutoff:
20000 Hz
Advanced Parameters
Compression:
0.0
Saturation:
0.0
Apply Inversion to Effects:
0.0
Effects Algorithm
Amplitude Inversion
Cardioid Transform
Lemniscate Transform
Stereographic Projection
Soundscape Layers
Add Layer
Clear All
Generative Presets
Ambient Space
Ethereal soundscapes with evolving inversion parameters
Rhythmic Geometry
Percussive elements with geometric modulation
Harmonic Series
Musical intervals transformed through inversion
Geometric Drone
Deep, evolving tones with mathematical precision
Crystalline Structures
Sharp, angular sounds with cardioid transformations
Oceanic Depths
Fluid, wave-like motions with lemniscate curves
Stellar Projection
Cosmic soundscapes with stereographic mapping
Fractal Cascade
Self-similar patterns with cross-ratio transformations
Temporal Shift
Time-warped sounds with Möbius transformations
Microtonal Garden
Complex tunings with orthogonal circle interactions
Real-time Analysis
Original Signal
Processed Signal
Frequency Analysis
Spectrum
Frequency Spectrum
Geometric Visualization
Current Transform:
z' = r²/(z̄ - c) + c
Radius:
1.0
Center:
0.0
Invariant:
Angles preserved